Tirucallane-Type Triterpenoids from Celastrus stylosus WALL.

by Wei-Guang Shan^a), Zai-Lin Gao^a), You-Min Ying^a)^b)^c), Jia-Gui Xiang^a), Fa-Song Wang^d), and Zha-Jun Zhan^{*a})

^a) College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China (phone/fax: +86-571-88871075; e-mail: zjnpr@zjut.edu.cn)

^b) Zhejiang CONBA Pharmaceutical & Drug Research Development Corporation, Hangzhou 310052, P. R. China

^c) Zhejiang Key Laboratory for Traditional Chinese Medicine, Pharmaceutical Technology, Hangzhou 310052, P. R. China

^d) Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province and College of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi 445000,

P. R. China

Two new tirucallane-type triterpenoids, (24Z)-tirucalla-7,24-diene- 3β ,11 β ,26-triol (1) and (3S,24R)-tirucall-7-ene-3,24,25-triol (2), along with the known compound celastrol (3), were isolated from the root barks of *Celastrus stylosus* WALL. The structures of 1-3 were established by spectroscopic methods, including extensive 2D NMR and MS analyses. It is the first report on tirucallane-type triterpenoids from the genus *Celastrus* and may be of vital chemotaxonomic significance.

Introduction. – The genus *Celastrus* comprises *ca.* 50 species throughout the world. They are widely distributed in Asia, especially in China [1]. Plants of this genus have been used as natural insecticides, and folk medicine to treat fever, chill, joint pain, edema, rheumatoid arthritis, and bacterial infection in China for a long time [2][3]. Studies on the chemical constituents of *Celastrus* in recent years have disclosed that sesquiterpenoids and triterpenoids are the important active components [4]. In the present work, we report the isolation and identification of two new tirucallane-type triterpenoids, (24Z)-tirucalla-7,24-diene-3 β ,11 β ,26-triol (1) and (3*S*,24*R*)-tirucall-7-ene-3,24,25-triol (2), along with the known compound celastrol (3), from the root barks of *C. stylosus* WALL.

Results and Discussion. – A CHCl₃ extract of the root bark of *C. stylosus* WALL. was subjected to extensive column chromatography to afford the two new tirucallane-type triterpenoids **1** and **2**, as well as the known metabolite **3** (*Fig.* 1).

Compound **1** was obtained as white amorphous powder with a molecular formula of $C_{30}H_{52}O_3$, as deduced from the $[M + H]^+$ peak at m/z 459.3826 in the HR-ESI-MS, corresponding to six degrees of unsaturation. The IR spectrum displayed a broad absorption band for OH groups (3359 cm⁻¹). The ¹³C-NMR and DEPT spectra (*Table*) indicated that compound **1** possesses a C_{30} -triterpenoid structure. The olefinic signals at δ (C) 142.9 (C(8)), 134.0 (C(25)), 128.9 (C(24)), and 119.8 (C(7)) were ascribed to two C=C bonds. The ¹H-NMR spectrum showed one Me *doublet* at δ (H) 0.90 (*d*, *J* =

^{© 2014} Verlag Helvetica Chimica Acta AG, Zürich

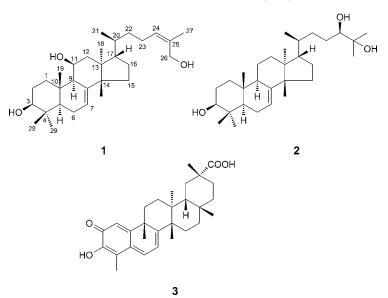


Fig. 1. Structures of compounds 1-3

6.5, Me(21)), six Me singlets at $\delta(H)$ 1.79 (s, Me(27)), 0.97 (s, Me(29)), 0.89 (s, Me(18)), 0.87 (s, Me(30)), 0.86 (s, Me(28)), and 0.85 (s, Me(19)), signals of a CH₂OH group at $\delta(H)$ 4.13 (s, CH₂(26)), two olefinic signals at $\delta(H)$ 5.31 (m, H–C(7)) and 5.28 (dd, J = 7.5, 7.5, H-C(24)), and two CH-O groups at $\delta(H)$ 4.17 (ddd, J = 14.0, 9.5, 4.5, 4.5)H-C(11)) and 3.26 (dd, J = 11.0, 4.5, H-C(3)), corresponding to the O-bearing C-atom signals at $\delta(C)$ 67.4 (C(11)) and 78.8 (C(3)), respectively. These data of 1 provided evidence for a tirucallane or euphane system with two C=C bonds and three OH groups [5][6]. A detailed comparison of the NMR data of **1** with those reported in literature suggested that 1 should be a hydroxylated analog of the known compound (24Z)tirucalla-7,24-diene-3 β ,27-diol [7], which was verified by elucidating the 2D-NMR spectra. Specifically, ¹H,¹H-COSY plots (*Fig. 2*) of H–C(9) (δ (H) 2.22–2.38) and $CH_2(11)$ ($\delta(H)$ 4.17), as well as HMBCs (*Fig.* 2) from H–C(11) ($\delta(H)$ 4.17) to C(8), C(9), and C(13) indicated that the additional OH group was at C(11). As to the relative configuration at C(11), an NOE correlation H–C(11)/Me(18) indicated the α orientation of H–C(11). Compound 1 was thus identified as (24Z)-tirucalla-7,24diene- 3β , 11β , 26-triol.

Compound **2** was obtained as white amorphous powder and assigned the molecular formula $C_{30}H_{52}O_3$ according to the $[M + H]^+$ peak at m/z 461.3985 in the HR-ESI-MS, implying five degrees of unsaturation. The NMR data of **2** showed similarities with those of **1**. However, compound **2** did not exhibit signals for a C=C bond in the side chain as in the case of **1**. Instead, it possessed an additional CH–O group and quaternary C-atom ($\delta(C)$ 79.5 and 73.2, resp.). This implied that **2** possesses a side chain containing two OH groups at the expense of the C(24)=C(25) bond in compound **1**. The two *singlets* assignable to Me(26) and Me(27) were shifted downfield ($\delta(H)$ 1.16 and 1.22), suggesting that one of the OH groups in the side chain is located at C(25)

Position	1		2	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
1a	2.00-2.07(m)	38.3	1.61 - 1.73 (m),	37.2
1b	1.43 - 1.50 (m)		1.07 - 1.19(m)	
2a	1.61 - 1.70 (m)	27.7	$1.54 - 1.71 \ (m)$	27.6
2b	1.58 - 1.62 (m)			
3	3.26 (dd, J = 11.0, 4.5)	78.8	3.24 (dd, J = 11.5, 4.0)	79.2
4	_	39.3	_	39.0
5	$1.35 - 1.41 \ (m)$	50.5	1.27 - 1.34 (m)	50.6
6a	2.15 - 2.21 (m)	24.1	2.09 - 2.20 (m),	23.9
6b	$1.95 - 2.01 \ (m)$		1.90 - 2.02 (m)	
7	5.31 (<i>m</i>)	119.8	5.26 (<i>m</i>)	117.9
8	_	142.9	_	145.8
9	2.22 - 2.28(m)	56.7	2.14 - 2.26 (m)	48.9
10	_	36.6	_	34.9
11	4.17 (ddd, J = 14.0, 9.5, 4.5)	67.4	1.45 - 1.56 (m)	18.1
12a	2.33 - 2.41 (m)	48.0	1.78 - 1.86(m)	33.7
12b	1.46 - 1.51 (m)		1.60 - 1.79(m)	
13	_	44.2	_	43.6
14	_	51.0	_	51.3
15a	1.49 - 1.57 (m)	34.1	1.48 - 1.57 (m)	33.9
15b	1.44 - 1.51 (m)		1.38 - 1.52 (m)	
16a	1.90 - 1.98(m)	28.0	1.89 - 1.99(m)	28.4
16b	1.26 - 1.32 (m)		1.24 - 1.33 (m)	
17	1.41 - 1.59(m)	52.5	1.49 - 1.54(m)	53.0
18	0.89(s)	20.9	0.83(s)	22.1
19	0.85(s)	14.2	0.75(s)	13.1
20	1.33 - 1.42 (m)	35.8	1.36 - 1.54 (m)	36.4
21	0.90 (d, J = 6.5)	18.4	0.86(d, J = 6.5)	18.8
22a	1.39 - 1.49 (m)	36.4	1.86 - 1.96 (m)	32.3
22b	1.01 - 1.09(m)		0.92 - 1.01 (m)	
23a	2.08 - 2.13 (m)	24.5	1.55 - 1.64(m)	29.0
23b	1.90 - 1.99(m)		1.07 - 1.16(m)	
24	5.28 (dd, J = 7.5, 7.5)	128.9	3.28 (dd, J = 9.5, 2.0)	79.5
25	_	134.0	=	73.2
26	4.13 (s)	61.5	1.16 (s)	23.2
27	1.79 (s)	21.2	1.22(s)	26.6
28	0.86 (s)	14.7	0.86(s)	14.7
29	0.97(s)	27.6	0.97(s)	27.3
30	0.87 (s)	27.4	0.87(s)	27.7

Table. *NMR Data of Compounds* **1** *and* **2**. In $CDCl_3$; δ in ppm, *J* in Hz.

[8][9]. This assumption was supported by the HMBC from the signals at $\delta(H)$ 1.16 and 1.22 to the resonances at $\delta(C)$ 73.2 and 79.5. The other OH group was determined to be located at C(24) by resorting to the HMBC from H–C(24) ($\delta(H)$ 3.28) to C(22), C(23), C(25), C(26), and C(27). These data established a constitutional formula tirucall-7-ene-3,24,25-triol for **2**. Search of the related literature provided one hit, *i.e.*, (3*S*,24*S*)-tirucall-7-ene-3,24,25-triol, whose ¹H-NMR data were consistent with those of **2**, except for the data ascribed to H–C(24). Specially, H–C(24) gave rise to a double

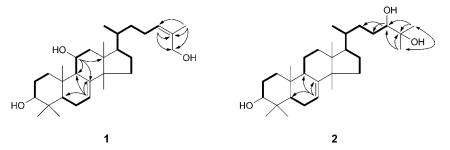


Fig. 2. Selected ¹H, ¹H-COSY (-) and HMBC (H \rightarrow C) features of 1 and 2

doublet at $\delta(H)$ 3.28 (dd, J = 9.5, 2.0) in **2**, while it resonated at $\delta(H)$ 3.36 as a multiplet in (3*S*,24*S*)-tirucall-7-ene-3,24,25-triol [10], suggesting that the two compounds most likely are stereoisomers at C(24). Similar deviations were also observed in a series of 3,4-secotirucallane triterpenoids possessing the same C₈ side chain and their corresponding C(24) stereoisomers, in which, the (24*R*)- and (24*S*)-isomers exhibited the H–C(24) resonances as double *doublets* at $\delta(H)$ 3.28 and *triplets* at $\delta(H)$ 3.34, respectively [9]. Hence, compound **2** was elucidated as (3*S*,24*R*)-tirucall-7-ene-3,24,25triol.

The known compound was identified as celastrol (3) by comparing its spectroscopic data with those in the literature [11].

Studies on the chemical constituents of the genus *Celastrus* resulted in the discovery of many triterpenoids [4][12], though no tirucallane triterpenoid had been identified as yet from this genus. Compounds **1** and **2** represent the first two tirucallane triterpenoids occurring in the genus *Celastrus*. In addition, to the best of our knowledge, there has been no report concerning a chemical investigation of the species *Celastrus stylosus* before. The isolation and identification of compounds **1** and **2** may be of considerable significance for the chemotaxonomy of the species *Celastrus stylosus* and the genus *Celastrus*.

Experimental Part

General. All solvents used were of anal. grade and obtained from commercial sources. TLC: Precoated silica gel GF_{254} plates (Qingdao Marine Chemical Inc., Qingdao, P. R. China); visualized with UV light and 10% H₂SO₄/EtOH. Column chromatography (CC): silica gel (SiO₂, 200–300 mesh; Qingdao Marine Chemical Inc., Qingdao, P. R. China) and ODS C-18 gel (50 µm; YMC Co. Ltd., Kyoto, Japan). Optical rotations: Rudolph Research Autopol III automatic polarimeter. IR Spectra: Thermo-Nicolet-6700 FT-IR microscope instrument (FT-IR microscope transmission). NMR Spectra: Bruker-AM-500 apparatus; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI- and HR-ESI-MS: Agilent-6210-LC/TOF mass spectrometer; in m/z.

Plant Material. Celastrus stylosus was collected in Hubei Province, P. R. China, in July 2010, and was identified by Prof. *Fa-Song Wang* of the Hubei University for Nationalities, P. R. China. A voucher specimen (No. HUN201007) was deposited with the Hubei University for Nationalities.

Extraction and Isolation. The shade-dried root barks of *C. stylosus* WALL. (9.6 kg) were coarsely powdered and extracted with 95% aq. MeOH (4×801). After solvent removal, the crude extract (1450 g) was suspended in H₂O (21) and extracted with CHCl₃ (5×21) to afford the CHCl₃-soluble fraction (652 g), which was subjected to CC (SiO₂; petroleum ether/AcOEt 10:1 \rightarrow 1:2) to furnish three

main fractions *Frs.* 1–3. *Fr.* 2 was purified by CC (*ODS C18*; MeOH/H₂O 1:1 \rightarrow 9:1) to afford **3** (30 mg). *Fr.* 3 was separated by CC (SiO₂; petroleum ether/acetone 5:1 \rightarrow 1:2) to give four *Subfrs.* 3A–3D. *Fr.* 3C was subjected to CC (*ODS C18*; MeOH/H₂O 3:1 \rightarrow 9:1) to afford **2** (20 mg) and **1** (15 mg).

(24Z)-*Tirucalla-7,24-diene-3β,11β,26-triol* (=(3β,11β,13α,14β,17α,208,24Z)-*Lanosta-7,24-diene-3,11,26-triol*; **1**). White amorphous power. $[a]_{D}^{2D} = -39.9$ (c = 0.53, CHCl₃). IR: 3359, 2938, 1718, 1456, 1380, 1031. ¹H- and ¹³C-NMR: see the *Table*. ESI-MS (pos.): 459 ($[M + H]^+$). HR-ESI-MS (pos.): 459.3826 ($[M + H]^+$, $C_{30}H_{51}O_3^+$; calc. 459.3833).

(3S,24R)-*Tirucall*-7-*ene*-3,24,25-*triol* (= $(3\beta,13\alpha,14\beta,17\alpha,20S,24R)$ -*Lanost*-7-*ene*-3,24,25-*triol*; **2**). White amorphous powder. $[\alpha]_{D}^{20} = -28.9$ (c = 0.45, CHCl₃). IR: 3409, 2920, 2852, 1738, 1463, 1375, 1241, 1157, 1069, 1032. ¹H- and ¹³C-NMR: see the *Table*. ESI-MS (pos.): 461 ($[M + H]^+$). HR-ESI-MS (pos.): 461.3985 ($[M + H]^+$, $C_{30}H_{53}O_3^+$; calc. 461.3989).

The financial support of the Scientific Foundation of Zhejiang University of Technology (2013XY010) and the Natural Science Foundation of P. R. China (21362011) is gratefully acknowledged.

REFERENCES

- Botany Institute of Chinese Academy of Sciences, in 'Index of Higher Plant in China', Beijing House of Science Press, 1985, 261.
- [2] N. Wakabayashi, W. J. Wu, R. M. Waters, R. E. Redfern, G. D. Mills Jr., A. B. DeMilo, W. R. Lusby, D. Andrzejewski, J. Nat. Prod. 1988, 51, 537.
- [3] P. Chen, J. Liang, Strait Pharm. J. 1999, 4, 3.
- [4] X.-H. Su, M.-L. Zhang, W.-H. Zhan, C.-H. Huo, Q.-W. Shi, Y.-C. Gu, H. Kiyota, Chem. Biodiversity 2009, 6, 146.
- [5] T. Itoh, T. Tamura, T. Matsumoto, Steroids 1976, 27, 275.
- [6] T. Itoh, T. Tamura, T. Matsumoto, Lipids 1976, 11, 434.
- [7] Y. Niimi, H. Hirota, T. Tsuyuki, T. Takahashi, Chem. Pharm. Bull. 1989, 37, 57.
- [8] M. Ukiya, T. Akihisa, K. Yasukawa, Y. Kasahara, Y. Kimura, K. Koike, T. Nikaido, M. Takido, J. Agric. Food Chem. 2001, 49, 3187.
- [9] M. Ukiya, T. Akihisa, H. Tokuda, K. Koike, J. Takayasu, H. Okuda, Y. Kimura, T. Nikaido, H. Nishino, J. Agric. Food Chem. 2003, 51, 2949.
- [10] M. M. Sherman, R. P. Borris, M. Ogura, G. A. Cordell, N. R. Farnsworth, *Phytochemistry* 1980, 19, 1499.
- [11] O. Ngassapa, D. D. Soejarto, J. M. Pezzuto, N. R. Farnsworth, J. Nat. Prod. 1994, 57, 1.
- [12] W.-G. Shan, L.-W. Zhang, J.-G. Xiang, Z.-J. Zhan, Chem. Biodiversity 2013, 10, 1392.

Received January 19, 2014